RANDOM VARIABLES
AND THEIR
DISTRIBUTIONS

2.1

INTRODUCTION

QOur purpose is to develop mathematical models for describing the probabilities
of outcomes or events occurring in a sample space. Because mathematical equa-
tions are expressed in terms of numerical values rather than as heads, colors, or
other properties, it is convenient to define a function, known as a random vari-
able, that associates sach outcome in the experiment with a real number, We then
can express the probability model for the experiment in terms of this associated
random variable. Of course, in many experiments the results of interest already
are numerical quantities, and in that case the natural function to use as the
random variable would be the identity function.

_Definition 2.1.1

Random Variable A random variable, say X, is a function defined over a sample
space, S, that associates a real number, X (¢} = x, with each possible outcome ¢ in S.
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Capital {etters, such 28 X W and Z will be used to denote random variabies.

The lower case letters X, Vs 2+ will be used to denote possible yalues that the
corresponding random variables can attain, For mathematical reasons, it will be
necessary O restrict the types of functions that are considered 10 be random

yariables. We will discuss this point after the following example.

A four-sided (tetrahedral) die has 2 different aumber—1, 2, 3, 01 4-——affixed to
each gide. On any given roll, each of the four numbers is equally likely to OCCUT-
l A game consists of rolling the die twice, and the scoI¢ is the maximum of the tWo
aumbers that occut. Although the score cannot be prcdictcd, we can determing
the set of possible values and define 2 random yariable. In particular, it e = (i, 1)
whers i, j € (1,23 4}, then X(e) = max @i, j). The sample Space, S, and X are
illustrated in Figure 2.1.

Exanipe 239

FlGURE 2.7 Sarple space tor two rolls ofa four-sided die
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Each of the events By, Bz, Bas and By of contains the pairs (i, j) that have @
cornmon maxirum. in other words, X has value x = i over By, X~ 2 over Bj»
x = 3 over B;,and x = 4 over B.-

Other tandom variables also could be considered. For example, the random
yariable Y(e) =i+ j represents the total on the two rolls.

The concept of & random variable permits US to associate with any sample
Space, 5, 2 sample space that is a set of real numbers, and i which the events of

interest are subsets of real numbers. 1 such a real-valued event 18 denoted by A,
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then we would want the associated set
B={elees and X(e) € 4} (2.1.1)

to be an event in the underlying sample space S. fiven though 4 and B are
subsets of different spaces, they usually are referred to as equivalent events, and
we write

P[X e A] = P(B) (21.2)

The notation P(A) sometimes is used instead of P[X € A] in equation 2.1.2).
This defines a st function on the collection of real-valued events, and it can be
shown to satisfy the three basic conditions of a probability set function, as given
by Definition 1.3.1.

Although the random variable X is defined as a function of e, it usually 18
possible to express the events of interest only in terms of the real values that X
assumes, Thus, our notation usually will suppress the dependence on the out-
comes in §, such as we have done ip equation (2.1.2).

For instance, i Example 2.L.1, if we were interested in the event of obtaining &
score of “at most 3,” this would correspond to X = 1,2, 0r3orXe {1, 2, 3}
Another possibility would be to represent the event in terms of some interval that
contains the values i,2,and 3 but not 4, such as A = (—0, 3} The associated
equivalent event in S i8 B=B, v B,V Bs, and the probability is
P(XeAl= P(B) = 1/16 + 3/16 + 5/16 = 9/16. A convenient notation for
P[X € A],in this example, is PLX < 3]. Actually, 20¥ other real event containing
1,2, and 3 but not 4 could be used in this way, but intervals, and especially those
of the form (— o, X1, will be of special importance in developing the properties of
random variables.

As mentioned in Section 1.3, if the probabilities can be determined for gach
olementary event in @ discrete sample space, then the probability of any event can
be calculated from these by expressing the event as a upion of mutually exclusive
elementary events, and summing over their probabilities. '

A more general approach for assigning probabilities to events in a real sample
gpace can be based on assigning probabilities 10 intervals of the form (=0, X]
for all real numbers x. Thus, we will consider as random variables only functions
X that satisfy the requirements that, for all real x, sets of the form

B=[X <x]=1{ele€ S and X(e) e (—0, X1} (2.1.3)

are events in the sample space S. The probabilities of other real evenis can be
evaluated in terms of the probabilities assigned to such intervals. For example,
for the game of Example 2.1.1, we have determined that P[X < 3] = 9/16, and it
also follows, by a similar argument, that P[X<2]= 1/4. Because (— o0, 2] con-
tains 1 and 2 but not 3, and (—0, 3] =(-®, 21v (2 3] it follows that
P[X=3]1=PLX = 3]-PX<2]= 9/16 — 1/4 = 5/16.

Other examples of random variables can be based on the sampling problems of
Section 1.6.
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.2 In Example 1.6.15, we discussed several alternative approaches for computing the
«exactly two black” magbles, when selecting five (without

black and 20 white marbles. Suppose we are
of obtaining x black marbles, for arbitrary x.
the number of black
P[X = x] for every pos-

sible valug x. This is easily accomplished with the approach given by equation

(1.6.8), and the result 18
(10)( 20 )
DA
P X =x B S A
L ] (3())
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Randor variables
iables in BExamples

that arise from counting operations,
2. 1.1, and 2.12, ar® integer-valued. Integer-valued ran-

=0, 1,234 5 (2.1.4)

such as the random var-

dom variables are examples of an important special type known as discrete random

variables.
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Definition 2.2.7
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that assigns the probability to gach

1 it is clear from the context that X is discrete,

i the st of all possible values of a random variable,
then X is called

X = Xy, X e

ability density funciion (discreie pdf).

X, is a countable set,
discrete random vayiable. The func-

(2.24)

possible value X will be called the diserete prob-

S

f
then we simply will say pdf.

Another common terminology i8 probability mass function (pmf), and the possible

values,
used.

The following theorem
satisfy.

x;, are called mass points of X.

Sometimes a subscripted notation, fylx), 18

gives general propertics {hat any discrete pdf must
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A function f(x) is a discrete pdf if and only if it satisfies both of the following
properties for at most a countably infinite set of reals Xy, Xg, -+t

flxd 20 (2.2.2)
for all x;, and

Y, flx)=1 (2.2.3)

all =

Proof

Property (2.2.2) follows from the fact that the value of a discrete pdfis 2 probabil-
ity and must be nonnegative. Because Xy, Xz, - represent all possible values of
X, the events [X = x.), [X =%) - constitute an exhaustive partition of the
sample space. Thus,

Y S = T PX=x]=1

Al x; atl xi
Consequently, any pdf must satisfy properiies (2.2.2) and (2.2.3) and any func-
tion that satisfies properties (2.2.2) and (2.2.3) will assign probabilities consis-
tent with Definition 1.3.1. &

Tn some problems, it s possible to express the pdf by means of an equation,
such as equation (2.1.4). However, it is sometimes MOTe convenient to €Xpress it
in tabular form. For example, one way 10 specify the pdf of X for the random
variable X in Example 2.1.1 is given in Table 2.1.

Walues of the discrate pdf
of the maximuim of two rolis
of a four-sided die

X 9 2 3 4

fx) 16 316 B8 7/16

Of course, these are the probabilities, respectively, of the events B,, B,, Bs,
and B,in S.

A graphic representation of f(x) is also of some interest. It would be possible to
leave f(x) undefined at points that arg not possible values of X, but it is conve-
aient to define f(x) as zero at such points. The graph of the pdf in Table 2118
shown in Figure 2.2.



e

FIGURE 2.2

Example 2.2.9

|

CHAPTER 2 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Discrete pdf of the maximurn of two rolls of a four-sided die
e
ﬁ\

7/16 =

5/16 -
3/16 -
1/16 = 9 T
i
2 4

Example 2.1.1 involves tWo solls of a four-sided die. Now we will roll a 12-sided
(dodccahedral) die twice. If each face 18 marked with an integer, 1 through 12,
then each value is equally likely to oceur on a single roll of the die. As before, we
define a random variable X to be the maximum obtained on the two rolls. It is
not hard to see that for each value x there are an odd number, 2x — 1, of ways
for that value to occur. Thus, the pdf of X must have the form

[ix) = e(2x — 1) for x=1,2,...,12 (2.2.4)

One way 10 determine ¢ would be to do a more complete analysis of the counting
problem, but another way would be to use equation (2.2.3). In particular,

12 12 12
i= }:f(x)=c2[2x—l)=c[22x—12]
x=1 x=1 x=1
c[%(igzﬂi)- - 12] = ¢(12)

9o ¢ = 1/(12)* = 1/144.

i

As mentioned in the last section, another way to specify the distribution of
probability is t0 assign probabilities to intervals of the form (— <0, x], for all real
x. The probability assigned to such an event is given by @ function called the

/

cumulative distribution furiction.

-
Definition 222

The cumulative distribution fumction (CDF) of a random variable X is defined for
any real x by

Flx)= P[X £x]} (2.2.5)
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SIGURE 2.3 The CDF of the maximum of two rolls of a four-sided die
F(x)
1 w
1 1 T i X
0 i 2 3 4

The function F(x) often is referred to simply as the distribution function of X,
and the subscripted potation, Fx(x), sometimes is used.

For brevity, we ofien will use a short notation to indicate that a distribution of
a particular form is appropriate. If we write X ~f (x) or X~ F(x), this will
mean that the random variable X has pdf fix)and CDF F(x).

As seen in Figure 2.3, the CDF of the distribution given i Table 2.1 is @
aondecreasing step function. The step-function form of F(x) is common to all
discrete distributions, and the sizes of the steps Of jumps in the graph of F(x)
correspond to the values of f(x) at those points. This is easily seen by comparing
Figures 2.2 and 2.3.

The general relationship between F(x) and f(x) for a discrete distribution is
given by the following theorem.

Theoram 2.2.2 Let X be a discrete random variable with pdf f(x) and CDF F(x). If the possible
values of X are jndexed in increasing ordet, X; < ¥z ik Ry then f(x4)
= F(x,), and for any i>1,

fx)= Flx) — F(x;-1) (2.2.8)
Furthermore, if X < X1 then F(x) = 0,and for any other real x
Fx)= Y, fx) 2279
xi€x
where the summation is taken over all indices i such that x; € X. ]

The CDF of any random yariable must satisfy the propertics of the following
theorem.
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v ooram 2.2.83 A function F (x) is a CDF for some random variable X if and only if it satisfies
the following properties:

!irF Fix)=0 (2.2.8)
lim F(x) =1 (2.2.9)
z=w
hlir(l;l*F(x + k) = F(x) : (2.2.10)
o < b implies F(a) < F(b) (2.2.11)

]

The first two properties say that F(x) can be made arbitrarily close to 0 or 1 by
taking x arbitrarily Jarge, and negative or positive, respectively. In the examples
considered so far, it turns out that F(x) actually assumes these limiting values.
Properiy (2.2.10) says that F(x) is continuous from the right. Notice that in Figure
2.3 the only discontinuities are at the values 1, 2, 3, and 4, and the limit as x
approaches these values from the right is the value of F(x) at these values. On the
other hand, as x approaches these values from the left, the limit of F(x) is
the value of F(x) on the lower step, SO F(x) is not (in general) continuous from
the left. Property (2.2.1 1) says that F(x) is nondecreasing, which is easily seen to be
the case in Figure 2.3. In general, this property follows from the fact that an
interval of the form (—o5, b] can be represenied as the union of two disjoint
intervals

(—oo, b] = (-0, a] v e, bl (2.2.12)

for any a<b. It follows that F(b)= Fla)+ Pla<x<bl= F(a), because
Pla<x<bl20, and thus equation (2.2.11) is obtained.

Actually, by this argument we have obtained another very useful result,
namely.

Pla < X < b] = F(b) — F(@) | (2.213)

This reduces the problem of computing probabilities for events defined in terms
of intervals of the form (g, b] to taking differences with F{x).

Generally, it is somewhat easier to understand the nature of 2 random variable
and its probability distribution by considering the pdf directly, rather than the
CDF, although the CDF will provide a good basis for defining continuous prob-
ability distributions. This will be considered in the next section.

Some important properties of probability distributions involve numerical
quantities calied cxpected values.
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| Definision 2.2.8

1}

if X is a discrete random vaiiable with pdf f(x), then the expected value of X is
defined by

E(X) =% xf(x) (2.2.18)

x

The sum (2.2.14) is understood to be over all possible values of X. Further-
more, it is an ordinary sum if the range of X is finite, and an infinite series if the
range of X is infinite. In the latter case, if the infinite series is not absolutely
convergent, then we will say that E(X) does not exist. Other common notations
for E(X) include p, possibly with a subscript, jtx . The terms mean and expectation
also are often used.

The mean or expected value of a random variable is a “weighted average,” and
it can be considered as a measure of the “center” of the associated probability
distribution.

A box contains four chips. Two are labeled with the number 2, one is labeled
with a 4, and the other with an 8. The average of the numbers on the four chips is
2+2+4+8)/d4=4 The experiment of choosing a chip at random and record-
ing its number can be associated with a discrete random variable X having dis-
tinct values x =2, 4, or 8, with f(@y=1/2 and f(4)= f(8) = 1/4. The
corresponding expected value or mean is

o))

as before. Notice that this also could model selection from a larger collection, as
long as the possible observed values of X and the respective proportions in the
collection, f(x), remain the same as in the present example.

THere is an analogy between the distribution of probability to values, X, and
the distribution of mass to points in a physical system. For example, if masses of
0.5, 0.25, and 0.25 grams are placed at the respective points x = 2, 4, and 8 cm on
the horizontal axis, then the value 2(0.5) + 4(0.25) + 8(0.25) = 4 is the “center of
mass” or balance point of the corresponding system. This is illustrated in
Figure 2.4.

The center-of-mass interpretation of the mean
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In the previous example E(X) coincides with one of the possible values of X,
but this is not always the case, as illustrated by the following example.

Example 2.2.3 A game of chance is based on drawing two chips at random without replacement
from the box considered in Example 722, If the numbers on the two chips
match, then the player wins $2; otherwise, she loses $1. Let X be the amount worn

by the player on 2 single play of the game. There are only tWo possible values,

X =2 if both chips bear the number 2, and X = —1 othetrwise. Furthermore,

4
there are ( 2) = 6 ways to draw (wo chips, and only one of these outcomes cOIre-

spond to a tnatch. The distribution of X is f(2) = 1/6 and f(—1) = 5/6, and con-
sequently the expected amount won is E(X) = (—1X5/6) + (2)(1/6) = —1/2. Thus,
the expected amount “yon” by the player is actually an expected 10ss of one-half
dollar.

The connection with long-term relative frequency also is well illustrated by this
example. Suppose the game is played M times in succession, and denote the
relative frequencies of winning and losing by fw and [y respectively. The average
amount the player wins i (- fe + @D fw- Because of statistical regularity, we
have that f, and fy approach f(—1) and f(2), respectively, and thus the player's
average Winnings approach E(X) as M approaches infinity.

Notice also that the game will be more equitable if the payoff to the player is
changed to 85 rather than $2, because the resulting expected amount won then
will be (— 1)(5/6) + (5)1/6) = 0. In general, for a game of chance, if the net
amount won by a player is X, then the game is said to be a fair game if E(X)=0.

2.3

e ———

CONTINUOUS RANDOM VARIABLES

The notion of a discrete random variable provides an adequate means of prok-
ability modeling for 2 Jarge class of problems, including those that arise from the
operation of counting, However, 2 discrete random variable is not an adequate
model in rany sitnations, and we must consider the notion of a continuous
random variable. The CDF defined eartier remains meaningful for continuous
random variables, but it also is useful to extend the concept of a pdf to contif-
wous random variables.

‘______._-——

| Example 2.34 Bach work day a man rides & bus to his place of business. Although a new bus
arrives promptly every five minutes, the man generally arrives at the bus stop at
candom time between bus arrivals, Thus, we might take his waiting time on any

given morning to be a random variable X.
Although in practice We usually measure time only to the nearest unit (seconds:
minutes, etc.), in theory we could measure time 10 within some arbitrarily small
unit. Thus, even though in practice it might be possible to regard X as 2 discrete
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random variable with possible values determined by the smallest appropriate
time unit, it usually is more convenient to consider the idealized situation in
which X is assumed capable of attaining any value in some interval, and not just
discrete points.

Returning to the man waiting for his bus, suppose that he is very observant
and noticed over the years that the frequency of days when he waits no more
than x minutes for the bus is proportional to x for all x. This suggests a CDF of
the form F(x) = P[X < x] = cx, for some constant ¢ > 0. Because the buses
arrive at regular five-minute intervals, the range of possible values of X is the
time interval [0, 5]. In other words, P[0 < X < 5] =1, and it follows that
I1=F(3)=c -3 and thus ¢ = /5, and F(x) = x/5 if 0 < x < 5. It also follows
that F{x) =0ifx <0 and F(x)=1ifx > 3.

Another way to study this distribution would be to observe the relative fre-
quency of bus arrivals during short time intervals of the same length, but distrib-
uted throughout the waiting-time interval [0, 5]. It may be that the frequency of
bus arrivals during intervals of the form (x, x + Ax] for small Ax was proportion-
al to the length of the interval, Ax, regardless of the value of x. The correspond-
ing condition this imposes on the distribution of X is

Plx < X €£x+ Ax] = F(x + Ax) — F(x) = ¢ Ax
for all 0 < x < x + Ax < § and some ¢ > 0. Of course, this implies that if F(x) is
differentiable at x, its derivative is constant, F'(x) = ¢ > (. Note aiso that for
x<0or x>35 the derivative also exists, but F{x)=0 because
Plx <= X € x + Ax] = 0 when x and x + Ax are not possible values of X, and
the derivative does not exist at all at x = 0 or 5.

In general, if F(x) is the CDF of a continuous random variable X, then we will
denote its derivative (where it exists) by f(x), and under certain conditions, which
will be specified shortly, we will call f(x) the probability density function of X. In
our example, F(x) can be represented for values of x in the interval [0, 5] as the
integral of its derivative:

1 X

F(X)=Jlx flr) dt = {; gdt=—5-

The graphs of F(x) and f{x) are shown in Figure 2.5,

CDF and pdf of waiting time for a bus

F(x) S
& A

14 -
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This provides 8 general approach 10 defining the distribution of & continuous
random variable X.

______‘___'__,_.___‘________ﬂ__,_ﬂ

{ X o oo
L Definition 2.3.1

& random vapiable X is called a continuous random variable if there is a function
fix), called the probability density fumerion (pdf) of X, such that the CDF can be
represented a8

Flx)= jx [l di (2.3.1)

In mofe advanced treatments of probability, such distributions sometimes are
called “absolutely continuouns” distributions. The reason for such 2 distinction 18
that CDFs exist that are continuous (in the asual sense), but which cannot be
represented as the integral of the derivative. We will apply the terminology ¢om~
tinuous distribution only to probability distributions that satisfy property (23.1).

Sometimes it 1S convenient {0 Use 2 subscripted notation, Fy(x) and fy(x), for
the CDF and pdf, respectively-

The defining property (2.3.1) provides a w2y 1o derive the CDF when the pdf is
given, and it follows by the Fundamental Theorem of Calculus that the pdf ¢an
be obtained from the CDF by differentiation. Specifically.

[ = F¥) = F) (232

whetever the derivative exists. Recall from Example 2.3.1 that there were WO
values of x where the derivative of F(x) did not exist. In general, there may be
many values of x where F(X) is not differentiable, and these will occur at discon-
tinuity points of the pdf, f (x). Inspection of the graphs of f{x) and F(x) in Figure
2.5 shows that this situation oceurs in the example at X = 0 and x = 5. Howevet,
this will not usually create 2 problem if the set of such values is finite, because an
integrand can be redefined arbitrarily at @ finite number of values X without
affecting the value of the integral. Thus, {he function F(x), as represented in pro-
perty (2.3.0), 1s unaffected regardless of how we treat such values. It also follows
by similar considerations that events such as (X =cl where cis @ constant, will
have probability zero when X is 2 continuous random variable. Consequenilys
events of the form (X ell where 7 is an interval, are assigned the same probabil-
ity whether 7 includes the endpoinis or not. In other words, for a confinuous
randoin variable X, ifa < b,

P[a<‘}(gb]=P[aéX<b]=P{a<X<b}
=PlacX= bl (2.33)

and sach of these tas the value F (b) — Fla)
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Thus, the CDF, F(x), assigns probabilities to events of the form (—co, x], and
equation (2.3.3) shows how the probability assignment can be extended to any
interval.

Any function f(x) may be considered as a possible candidate for a pdf if it
produces a legitimate CDF when integrated as in property (2.3.1). The following
theorem provides conditions that will guarantee this.

A function f(x) is a pdf for some continuous random variable X if and only if it
satisfies the propertics

Jx)=0 (2.3.4)

for all real x, and

Imfde=l (2.3.5)

Proof

Properties (2.2.9) and (2.2.11) of a CDF follow from properties (2.3.5) and (2.3.4),
respectively. The other properties follow from general results about integrals. [

/» machine produces copper wire, and occasionally there is a flaw at some point
along the wire, The length of wire (in meters) produced between successive flaws
is a continuous random variable X with pdf of the form

_Jdl+ )™ x>0
ﬂﬁ~{0 *<0 (2.3.6)

where ¢ is a constant. The value of ¢ can be determined by means of property
(2.3.5). Specifically, set

Ii= Jm f{x)dx = del +x)" 2 dx = c(l)
“w o 2

which is obtained following the substitution # = | + x and an application of the
power rule for integrals. This implies that the constant is ¢ = 2.
Clearly property (2.3.4) also is satisfied in this case.
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The CDF for this random variable is given by

F(x)

\

PIX<xl= r fle) dt

Q %
5 0dt+§2{1+t)'3dt x>0
- Q

g 0 di x<0
_{l—(i-\—x)'z x =0
10 x<0

Probabilities of intervals, such a8 Plas X = b], can be expressed directly in
.erms of the CDF or as integrals of the pdf. For example, the probability that 2
faw occurs between 0.40 and 0.45 meters is given by

0.45
P040 < X < 045] = j F(x) dx = F(045) = F(0.40) = 0035
.40

Consideration of the frequency of QCcurrences Over short intervals was Sug-
gested as @ possible way 1o study a continuous distribution in Example 2.3.1.
This approach provides some insight into the general nature of continuous dis-
¢ributions. For example, it may be observed that the frequency of occurrences
over short intervals of length Ax, say [x, x + Ax], is at least approximately pro-
portional to the length of the interval, Ax, where the proportionality factor
depends on X, 8a¥ f{x). The condition this imposes 0t the distribution of X is

PIxsX=sx+t Ax] = Flx+ Ax) — Fix)
= f(x) Ax (2.3.7)

where the error in the approximation is negligible relative to the length of the
interval, &x. This is illustrated in Figure 2.6. for the copper Wire example.

The exact probability in equation (2.37) is reprcsented by the area of the
shaded region under the graph of f(x), while the approximation is the area of the
corresponding rectangle with height f(x) and width Ax.

The smaller the valug of Ax, the closer this approximation becomes. In this
sense, it might be ceasonable to think of f(x) as assigning “probability density”
for the distribution of X, and the term probability density function seems appro-
priate for f(x). In other words, for 2 contintuous random variable X, f(x) js not 8
probability. although it does determine the probability agsigned to arbitrarily
small intervals. The area between the x-axis and the graph of f(x) assigns prob-
ability to intervals, so that fora <b,

g
Pla< X <bl= } f(x) dx (2.38)

a
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FIGUAE 2.6 Continuous assignment of probability by pdf

1L

§

ol

L

0 X X+ Ax

In Example 2.3.2, we could take the probability that the length between suc-
cessive flaws between 040 and 045 meters to be approximately
F(0.40)(0.05) = 2(1.4)73(0.05) = 0.036, or we could integrate the pdf between the
fimits 0.40 and 0.45 to obtain the exact answer, 0.035. For longer intervals, inte-
grating f(x) as in equation (2.3.8) would be more reasonable.

Note that in Section 2.2 we referred to a probability density function or density
function for a discrete random variable, but the interpretation there is different,
because probability is assigned at discrete points in that case rather than in a
continuous manner. However, it will be convenient to refer to the “density func-

ion” or pdf in both continnous and discrete cases, and to use the same notation,
J{x) or fy(x), in the later chapters of the book. This will avoid the necessity of
separate statements of general results that apply to both cases.

The notion of expected value can be extended to continuous random variables.

wrinition 2.3.2

if X is a continuous random variable with pdf f(x), then the expected value of X is
defined by

* I

E(X)= J N xf{x) dx (2.3.9)

@
if the integral in equation {2.3.9) is absolutely convergent. Otherwise we say that
E(X) does not exist.

As in the discrete case, other notations for E(X) are y or uy, and the terms
mean or expectation of X also are commonly used. The center-of-mass analogy is
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still valid in this case, where mass 18 assigned to the x-axis in a continuous
manner and in accordance with f(x). Thus, p can also be regarded as a central
measure for a conlinuous distribution.

In Example 2.3.2, the mean length between fHaws in a piece of wire is

0 o
,u=J x'de+j W, T Ry

=0 &

if we make the substitution £ = 1 + X, then

p=2y T — l)z‘édz=2(1—£)==1
t 2

Other properties of probability distributions can be described in terms of
quantities called percentiles.

1 Definition 2.3.3
]
| Jf0<p<i,thenal00x pih percentile of the distribution of 2 continuous random
¢ariable X is a solution x, 10 ihe equation

Flx)=7p (2.3.10)

In general, a distribution may not be continuous, and if it has a discontinuity,
then there will be some vatues of p for which equation (2.3.10) has no solution.
Although we emphasize the continuous case in this book it is possible to state a
general definition of percentile by defining a pth percentile c. ‘he distribution of
X to be a value x, such that P[IX €x,12 P and PIX2x,]Z2+— P

In essence, X, is a value such that 100 x p percent of the population values are
at most x, and 100 % (1 — p) percent of the population values are at least X,.
This is illustrated for & continuous distribution in Figure 2.7. We also can think
in terms of a proportion p rather than g percentage 100 % p of the population,
and in this context X, is called a pth quantile of the distribution. '

A 100 x pth percentile

Fx
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A median of the distribution of X is a 50th percentile, denoted by x4 5 or m.
This is an important special case of the percentile such that half of the population
values are above it and half are below it. The median is used in some applications
instead of the mean as a central measure.

-xample 2.3.3 Consider the distribution of lifetimes, X (in months), of a particular type of com-

ponent. We will assume that the CDF has the form
Fx)=1—¢ % x>0

and zero otherwise. ;l“hc median lifetime is
m=3[—In (1 — 0.5]"* = 3./In 2 = 2.498 months

It is desired to find the time ¢ such that 10% of the components fail before t.
This is the 10th percentile:

Xo.10 = 3[—In (1 = 0.)]"2 =3,/ ~In (0.9) = 0.974 months

Thus, if the components are guaranteed for onc month, slightly more than 10%
will need to be replaced.

Another measure of central tendency, which is sometimes considered, is the
mode.

befinition 2.3.4

If the pdf has a uniqu¢ maximum at x = my, say max f{x) = f(mq), then m, is called
the mode of X.

Tn the previous example, the pdf of the distribution of lifetimes is

N

flx)= (g)xe""‘-’ . x>0

The solution to f(x)=0 is the unique maximum of f{x), x =mo =3/2/2
= 2.121 months.

In general, the mean, median, and mode may be all different, but there are
cases in which they all agree.

Deafinition 2.3.5

A,distribulion with pdf f(x) is said to be symmetsic about ¢ if f(c — x) = fic + x) for
all x.
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The pdf of 8 gymmetric distribution

Fix)

n= M= m

In other words, the “centered” pdf g(x) = fle — x) is an sven function, in the
usual sense that gix) = gl—x)- The graph of ¥ = fix)is a “Inirror jmage” about
the vertical line x = ¢ Asymmcu’ic distributions, such as the one in Example
232, are called skewerl distributions.

0 f(x)s symmetric about ¢ and the mean j eXists, then ¢ = u. If additionally,
f(x)hasa unique maxinum at mg and 2 unique median 1, then y = Mo = 1 This
is illustrated in Figure 2.8.

VIIXED DISTRIB UTIONS

{t is possible 10 have a random yatiable whose distribution 18 neither purely
discrete not continuous. A probability distribution for @ random variable X is of
mixed type if the CDF has the form

Fix) = aF dx) + (1 — a)F{x)

where F4x)and F.(x)are CDFs of discrete and continuous type, respectively, and
o<a<l

f

Suppose that 2 driver encounters a stop sign and either waits for a random
period of time pefore proceeding of proceeds immediately. AR appropriate model
would allow the waiting time to be gither zero of positive, both with nonzero
probability. Let the CDF of the waiting time X be :

F(x) = 0AF Ax) + 0.6F (x)
— 04+ 06 — e ™)

where Fax)=1 and Fi¥)=1- e ¥ if x20, and both are zer0 i x < 0. The
graph of F(x) is shownt in Figure 2.9. Thus, the probability of proceeding imme-
diately is PLX = 0] = 0.4. The probability that the waiting time is less thad 0.



